MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response
نویسندگان
چکیده
Stress in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a multifaceted signaling system coordinating translational control and gene transcription to promote cellular adaptation and survival. Microribonucleic acids (RNAs; miRNAs), single-stranded RNAs that typically function as posttranscriptional modulators of gene activity, have been shown to inhibit translation of certain secretory pathway proteins during the UPR. However, it remains unclear whether miRNAs regulate UPR signaling effectors directly. In this paper, we report that a star strand miRNA, miR-30c-2* (recently designated miR-30c-2-3p), is induced by the protein kinase RNA activated-like ER kinase (PERK) pathway of the UPR and governs expression of XBP1 (X-box binding protein 1), a key transcription factor that augments secretory capacity and promotes cell survival in the adaptive UPR. These data provide the first link between an miRNA and direct regulation of the ER stress response and reveal a novel molecular mechanism by which the PERK pathway, via miR-30c-2*, influences the scale of XBP1-mediated gene expression and cell fate in the UPR.
منابع مشابه
ER stress PERKs up an miRNA
ER stress PERKs up an miRNA B yrd et al. describe how a microRNA (miRNA) fi ne-tunes a cell's response to ER stress. When stressful conditions disrupt the ER's normal function, the cell activates an unfolded protein response (UPR) that restores the organelle's ability to fold and export proteins to the secretory pathway. The transcription factor XBP1 is a key component of the UPR that boosts ER...
متن کاملRole of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کاملGenome-wide analysis of thapsigargin-induced microRNAs and their targets in NIH3T3 cells
Disruption of the endoplasmic reticulum (ER) homeostasis is the cause of ER stress. We performed microRNA (miRNA) analysis (deep sequencing) to search for coping responses (including signaling pathways) induced by disrupted ER Ca(2 +) homeostasis. Our focus was on a specific branch of UPR namely the bi-functional protein kinase/endoribonuclease inositol-requiring element 1α (IRE1α). Activated I...
متن کاملInhibition of IRE1α-mediated XBP1 mRNA cleavage by XBP1 reveals a novel regulatory process during the unfolded protein
The mammalian endoplasmic reticulum (ER) continuously adapts Background: to the cellular secretory load by the activation of an unfolded protein response (UPR). This stress response results in expansion of the ER, upregulation of proteins involved in protein folding and degradation, and attenuation of protein synthesis. The response is orchestrated by three signalling pathways each activated ...
متن کاملMicroRNA‐214 Is Upregulated in Heart Failure Patients and Suppresses XBP1‐Mediated Endothelial Cells Angiogenesis
More and more miRNAs have been shown to regulate gene expression in the heart and dysregulation of their expression has been linked to cardiovascular diseases including the miR-199a/214 cluster. However, the signature of circulating miR-214 expression and its possible roles during the development of heart failure has been less well studied. In this study, we elucidated the biological and clinic...
متن کامل